Hall	Ticl	ket l	Vumb	er:								
												Code No.: 21603
*	T 7	40	4 T.T	CÓ	Y T 1	. 01	ומד מ	MOT	NII	ו כו קו	INC (Automonio)	HVDEDADAD

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year I – Semester (Main) Examinations, December – 2015

Tin	Bridge Course: Engineering Mechanics me: 3 hours Max. Marks:	50										
	Note: Answer ALL questions in Part-A and any FIVE questions from Part-B											
Part-A (15 Marks)												
1.	Find the force multiper for a spatial force 10kN along a line from A(2,0,4) to B(3,4,2).	[1]										
2.	For finding the moment of a force about a point only cross product is used. (True / False).	[1]										
3.	A stone is dropped vertically down in a well of depth 30m, find the velocity of stone while hitting the water wave.	[1]										
4.	Write the kinematic equations for plane motion.	[1]										
5.	Show that magnitude of frictional force is depends upon normal reaction only.	[1]										
6.	A block of weight 150 N rests on a rough horizontal surface with coefficient of friction 0.15. Determine the maximum friction force required to move the block.	[2]										
7.	Explain cone of friction.	[2]										
8.	How the mass moment of inertia is useful in kinetics of rotation.	[2]										
9.	Define instantaneous centre.	[2]										
10.	Distinguish between plane motion and curvilinear motion.	[2]										
Part-B (5 X 7=35 Marks)												
11.	a) If $A = 2i+7j+4k$ and $B = -i+0j+3k$, find the values of a.b and A x B.	[3]										
	b) In a spatial coordinate system, various points are referenced as given: A (8, 0, 0), B(4,-5,0), C(0,-10,0), D(0,0,-3) and E(0,3,6). A force F passes through B to E with a force multiplier of Fm=20 N/m. Find the moment of F about (i) the point B and (ii) a line passing through CD.	[4]										
12.	a) Define wedge friction.	[3]										
	b) Determine the minimum and maximum horizontal force P required for the block which is placed on inclined ground of 45° has a weight 200kN. The angle of friction at all contact surfaces is 20°.	[4]										
13.	a) A stone is dropped vertically down in a well of depth 30m, how much time taken to hear a water sound, if velocity of sound is 330m/s	[3]										
	b) A stone is thrown so that is strikes the inclined ground at $s = 0m$. If the ball rises to a maximum height of $h = 17.5m$ above the point of release, compute its initial velocity V_0 and inclination with ground.	[4]										

14. a) Define the term 'Kinetics' and 'kinematics'.

[3]

[4]

b) In the system of connected bodies shown, the pulleys are of negligible weight and frictionless. Determine the mass M₁ to give M₂ (100kN) an upward acceleration of 0.4g

 m_1 T m_2 m_2

15. a) Define the term pure rotation for kinetics.

[3]

[4]

- b) Show that the body has plane motion means it is combination of rotation and rectilinear motion.
- 16. a) Given the vectors $\mathbf{a} = 2\mathbf{i} 3\mathbf{j} 4\mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} \mathbf{j} 2\mathbf{k}$, evaluate $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c})$. [3]
 - b) A 500 N block rests on an inclined of 45° having coefficient of static friction as 0.25. [4] Compute the value of horizontal force P necessary to move the block in the direction of applied force.
- 17. Write short notes on any *two* of the following:

[7]

- a) Projectile motion.
- b) Resultant force and inertial force with respect to dynamics.
- c) Distinguish between rotation and curvilinear motion.

രുഭുത്ത