VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year I - Semester (Main) Examinations, December - 2015

Bridge Course : Engineering Mechanics

Time: 3 hours
Max. Marks: 50
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (15 Marks)

1. Find the force multiper for a spatial force 10 kN along a line from $\mathrm{A}(2,0,4)$ to $\mathrm{B}(3,4,2)$.
2. For finding the moment of a force about a point only cross product is used. (True / False).
3. A stone is dropped vertically down in a well of depth 30 m , find the velocity of stone while hitting the water wave.
4. Write the kinematic equations for plane motion.
5. Show that magnitude of frictional force is depends upon normal reaction only.
6. A block of weight 150 N rests on a rough horizontal surface with coefficient of friction 0.15 . Determine the maximum friction force required to move the block.
7. Explain cone of friction.
8. How the mass moment of inertia is useful in kinetics of rotation.
9. Define instantaneous centre.
10. Distinguish between plane motion and curvilinear motion.

Part-B (5 X $7=35$ Marks)

11. a) If $\mathbf{A}=2 \mathbf{i}+7 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{B}=-\mathbf{i}+0 \mathbf{j}+3 \mathbf{k}$, find the values of $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{A} \times \mathbf{B}$.
b) In a spatial coordinate system, various points are referenced as given : A $(8,0,0)$, $B(4,-5,0), C(0,-10,0), D(0,0,-3)$ and $E(0,3,6)$. A force F passes through B to E with a force multiplier of $\mathrm{Fm}=20 \mathrm{~N} / \mathrm{m}$. Find the moment of F about (i) the point B and (ii) a line passing through $C D$.
12. a) Define wedge friction.
b) Determine the minimum and maximum horizontal force P required for the block which is placed on inclined ground of 45° has a weight 200 kN . The angle of friction at all contact surfaces is 20°.
13. a) A stone is dropped vertically down in a well of depth 30 m , how much time taken to hear a water sound, if velocity of sound is $330 \mathrm{~m} / \mathrm{s}$
b) A stone is thrown so that is strikes the inclined ground at $\mathrm{s}=0 \mathrm{~m}$. If the ball rises to a maximum height of $\mathrm{h}=17.5 \mathrm{~m}$ above the point of release, compute its initial velocity V_{0} and inclination with ground.
14. a) Define the term 'Kinetics' and 'kinematics'.
b) In the system of connected bodies shown, the pulleys are of negligible weight and frictionless. Determine the mass M_{1} to give $\mathrm{M}_{2}(100 \mathrm{kN})$ an upward acceleration of 0.4 g

15. a) Define the term pure rotation for kinetics.
b) Show that the body has plane motion means it is combination of rotation and rectilinear motion.
16. a) Given the vectors $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k}, \mathbf{b}=4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{c}=3 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$, evaluate $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a} \times \mathbf{c})$.
b) A 500 N block rests on an inclined of 45° having coefficient of static friction as 0.25 . Compute the value of horizontal force P necessary to move the block in the direction of applied force.
17. Write short notes an any two of the following:
a) Projectile motion.
b) Resultant force and inertial force with respect to dynamics.
c) Distinguish between rotation and curvilinear motion.
